Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pseudocapacitors offer a unique strategy to combine the rapid charging rates of capacitors with the high energy density of batteries, potentially offering a unique solution to energy storage challenges. Bending and twisting aromatic building blocks to form contorted aromatics have emerged as a new strategy to create organic materials with unique and tunable properties. This paper studies the union between these two concepts: molecular contortion and organic pseudocapacitors. The recent development of fully organic pseudocapacitors, including high-performing devices based on perylene diimide organic redox units, introduces the added benefit of low cost, synthetic tunability, and increased flexibility. We synthesize a series of polymers by joining perylene diimide with various linkers that incorporate a helical moiety from [4]helicene to [6]helicene into the molecular backbone. We prepare three new electroactive polymers that incorporate benzene, naphthalene, and anthracene linkers and study their pseudocapacitive performance to infer key design principles for organic pseudocapacitors. Our results show that the naphthalene linker results in the most strongly coupled redox centers and displays the highest pseudocapacitance of 292 ± 47 F/g at 0.5 A/g. To understand the pseudocapacitive behavior, we synthesized dimer model compounds to further probe the electronic structure of these materials through electronic absorption spectroscopy and first-principles calculations. Our results suggest that the identity of the aromatic linker influences the contortion between neighboring perylene diimide units, the coupling between redox centers, and their relative angles and distances. We find that competing molecular design factors must be carefully optimized to generate high-performance devices. Overall, this study provides key insights into molecular design strategies for generating high-performing organic pseudocapacitor materials.more » « less
-
null (Ed.)Pseudocapacitors harness unique charge-storage mechanisms to enable high-capacity, rapidly cycling devices. Here we describe an organic system composed of perylene diimide and hexaazatrinaphthylene exhibiting a specific capacitance of 689 F g−1 at a rate of 0.5 A g−1, stability over 50,000 cycles, and unprecedented performance at rates as high as 75 A g−1. We incorporate the material into two-electrode devices for a practical demonstration of its potential in next-generation energy-storage systems. We identify the source of this exceptionally high rate charge storage as surface-mediated pseudocapacitance, through a combination of spectroscopic, computational and electrochemical measurements. By underscoring the importance of molecular contortion and complementary electronic attributes in the selection of molecular components, these results provide a general strategy for the creation of organic high-performance energy-storage materials.more » « less
-
Self-assembly of sensitizer and acceptor molecules has recently emerged as a promising strategy to facilitate and harness photon upconversion via triplet–triplet annihilation (TTA-UC). In addition to the energetic requirements, the structure and relative orientation of these molecules can have a strong influence on TTA-UC rates and efficiency. Here we report the synthesis of five different acceptor molecules composed of an anthracene core functionalized with 9,10- or 2,6-phenyl, methyl, or directly bound phosphonic acid groups and their incorporation into self-assembled bilayers on a ZrO 2 surface. All five films facilitate green-to-blue photon upconversion with Φ uc as high as 0.0023. The efficiency of TTA, and not triplet energy transfer, fluorescence, or losses via FRET, was primarily responsible for dictating the Φ uc emission. Even for molecules having similar photophysical properties, variation in the position of the phosphonic acid resulted in dramatically different Φ TTA , I th values, γ TTA , and D . Interestingly, we observed a strong linear correlation between Φ TTA and the I th value but the cause of this relationship, if any, is unclear.more » « less
An official website of the United States government
